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Fourier’s Law

• A rate equation that allows determination of the conduction heat flux

from knowledge of the temperature distribution in a medium

Fourier’s Law

• Its most general (vector) form for multidimensional conduction is:

q k T


   

Implications:

– Heat transfer is in the direction of decreasing temperature 

(basis for minus sign).

– Direction of heat transfer is perpendicular to lines of constant 

temperature (isotherms).

– Heat flux vector may be resolved into orthogonal components.

– Fourier’s law serves to define the thermal conductivity of the

medium
/k q T
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Heat Flux Components

(2.24)
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• Cylindrical Coordinates:  , ,T r z
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rq q q

• Spherical Coordinates:  , ,T r  

• Cartesian Coordinates:  , ,T x y z
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(2.3)
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Heat Flux Components (cont.)

• In angular coordinates                    , the temperature gradient is still

based on temperature change over a length scale and hence has

units of C/m and not C/deg.

  or ,  

• Heat rate for one-dimensional, radial conduction in a cylinder or sphere:

– Cylinder

2r r r rq A q rLq  

or,

2r r r rq A q rq    

– Sphere
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Heat Equation

The Heat Equation
• A differential equation whose solution provides the temperature distribution in a

stationary medium.

• Based on applying conservation of energy to a differential control volume 

through which energy transfer is exclusively by conduction.

• Cartesian Coordinates:

Net transfer of thermal energy into the 

control volume (inflow-outflow)
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Thermal energy

generation

Change in thermal

energy storage



Heat Equation (Radial Systems)
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• Spherical Coordinates:

• Cylindrical Coordinates:
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Heat Equation (Special Case)

• One-Dimensional Conduction in a Planar Medium with Constant Properties

and No Generation
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Boundary Conditions

Boundary and Initial Conditions
• For transient conduction, heat equation is first order in time, requiring 

specification of an initial temperature distribution:    
0

0
t=

T x,t = T x,

• Since heat equation is second order in space, two boundary conditions

must be specified for each coordinate direction.  Some common cases: 

Constant Surface Temperature:

 0 sT ,t = T

Constant Heat Flux:

0x= s

T
-k | = q

x


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T
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
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Convection:

 0 0x=

T
-k | = h T - T ,t

x



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Properties

Thermophysical Properties

Thermal Conductivity:  A measure of a material’s ability to transfer thermal 

energy by conduction.

Thermal Diffusivity:  A measure of a material’s ability to respond to changes

in its thermal environment.

Property Tables:

Solids:  Tables A.1 – A.3

Gases: Table A.4

Liquids: Tables A.5 – A.7



Properties (Nanoscale Effects)

Nanoscale Effects
• Conduction may be viewed as a consequence of energy carrier (electron or

phonon) motion.

• For the solid state:

• Energy carriers also collide with

physical boundaries, affecting 

their propagation.

 External boundaries of a film of material.

thick film (left) and thin film (right).

average energy carrier velocity, c < .

mfp

1

3
k Cc 

energy carrier

specific heat per

unit volume.

mean free path → average distance

traveled by an energy carrier before

a collision.

(2.7)



Properties (Nanoscale Effects; cont.)
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 Grain boundaries within a solid

Measured thermal conductivity of a ceramic material vs. grain size, L.  at 300 K 25 nm.
mfp

T  

• Fourier’s law does not accurately describe the finite energy carrier propagation

velocity.  This limitation is not important except in problems involving extremely

small time scales.

(2.9a)

(2.9b)

mfp
where  is the average distance

traveled before experiencing a 

collision with another energy carrier 

or boundary (See Table 2.1 and Eq. 2.11).





Conduction Analysis

Typical Methodology of a Conduction Analysis

• Solve appropriate form of heat equation to obtain the temperature

distribution. 

• Knowing the temperature distribution, apply Fourier’s law to obtain the

heat flux at any time, location and direction of interest.

• Applications:

Chapter 3: One-Dimensional, Steady-State Conduction

Chapter 4: Two-Dimensional, Steady-State Conduction

Chapter 5: Transient Conduction

• Consider possible microscale or nanoscale effects in problems involving

small physical dimensions or rapid changes in heat or cooling rates.



Problem: Thermal Response of  Plane Wall

Problem 2.43  Thermal response of a plane wall to convection heat transfer.

KNOWN:  Plane wall, initially at a uniform temperature, is suddenly exposed to convective heating. 
 

FIND:  (a) Differential equation and initial and boundary conditions which may be used to find the 

temperature distribution, T(x,t); (b) Sketch T(x,t) for the following conditions:  initial (t  0), steady-

state (t  ), and two intermediate times; (c) Sketch heat fluxes as a function of time at the two 

surfaces; (d) Expression for total energy transferred to wall per unit volume [J/m3]. 

SCHEMATIC:   

 

 



Problem: Thermal Response (cont.)

ASSUMPTIONS:  (1) One-dimensional conduction, (2) Constant properties, (3) No internal 

heat generation. 

ANALYSIS:  (a) For one-dimensional conduction with constant properties, the heat equation has the 

form, 

 

 

2
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T 1 T
=

a tx

 
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 

0

Initial:             0 0                                   uniform temperature

Boundaries:    0    0                                  adiabatic surface

                      

it    T x, = T     

x = T / x =

 x = L  



 

      surface convection
L

   - k T /  x  = h T L,t -T   






     

 

 
 

and the 

conditions are: 

(b) The temperature distributions are shown on the sketch. 

 

 

Note that the gradient at x = 0 is always zero, since this boundary is adiabatic.  Note also that the 

gradient at x = L decreases with time. 

<

<
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conv0in sE = q A dt




d) The total energy transferred to the wall may be expressed as

  in s 0
E = hA T - T L,t dt





Dividing both sides by AsL, the energy transferred per unit volume is 

  3

0
          J/minE h

= T - T L,t dt
V L




     

c) The heat flux,  xq x,t ,  as a function of time, is shown on the sketch for the surfaces x = 0 and 

 x = L. 

          

  

Problem: Thermal Response (cont.)

<
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Problem 2.29  Surface heat fluxes, heat generation and total rate of radiation

absorption in an irradiated semi-transparent material with a 

prescribed temperature distribution.

KNOWN:  Temperature distribution in a semi-transparent medium subjected to radiative flux. 

FIND:  (a) Expressions for the heat flux at the front and rear surfaces, (b) The heat generation rate  

 q x , and (c) Expression for absorbed radiation per unit surface area. 

SCHEMATIC:  

 
 

Problem: Non-uniform Generation due to Radiation Absorption



Problem : Non-uniform Generation (cont.)

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction in medium, (3) 

Constant properties, (4) All laser irradiation is absorbed and can be characterized by an internal 

volumetric heat generation term  q x . 

ANALYSIS:  (a) Knowing the temperature distribution, the surface heat fluxes are found using 

Fourier’s law, 
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Front Surface, x=0:   x

A A
q 0 = -k + B = - +kB

ka a
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(b) The heat diffusion equation for the medium is 
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  -ax -axd A
q x = -k + e + B = Ae .

dx ka

 
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(c) Performing an energy balance on the medium, 
 

 in out 0gE - E +E =  

Rear Surface, x=L:    -aL -aL
x

A A
q L = -k + e + B = - e +kB
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On a unit area basis 
 

      in out 0 -aL
g x x

A
E = -E + E = -q +q L =+ 1- e .

a
          

 
 

Alternatively, evaluate gE  by integration over the volume of the medium, 
 

    
0

1
LL L -ax -ax -aL

g 0 0

A A
E = q x dx = Ae dx = - e = - e .

a a
 
    

Problem : Non-uniform Generation (cont.)
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